Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.764
Filtrar
1.
Mol Biol Rep ; 51(1): 518, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622261

RESUMO

BACKGROUND: Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS: The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS: These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.


Assuntos
Carcinoma de Células Escamosas , Gases em Plasma , Neoplasias Cutâneas , Animais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Espécies Reativas de Oxigênio/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Gases em Plasma/farmacologia , Antígeno Nuclear de Célula em Proliferação/genética , Proteína X Associada a bcl-2 , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612465

RESUMO

Ulcerative colitis (UC) is a relapsing and reoccurring inflammatory bowel disease. The treatment effect of Alhagi maurorum and stem cell extracts on UC remains unclear. The aim of the present study was to investigate the protective role of Alhagi maurorum combined with stem cell extract on the intestinal mucosal barrier in an intestinal inflammation mouse model. Sixty mice were randomly divided into a control group, model group, Alhagi group, MSC group, and MSC/Alhagi group. MSC and Alhagi extract were found to reduce the disease activity index (DAI) scores in mice with colitis, alleviate weight loss, improve intestinal inflammation in mice (p < 0.05), preserve the integrity of the ileal wall and increase the number of goblet cells and mucin in colon tissues. Little inflammatory cell infiltration was observed in the Alhagi, MSC, or MSC/Alhagi groups, and the degree of inflammation was significantly alleviated compared with that in the model group. The distribution of PCNA and TNF-alpha in the colonic tissues of the model group was more disperse than that in the normal group (p < 0.05), and the fluorescence intensity was lower. After MSC/Alhagi intervention, PCNA and TNF-alpha were distributed along the cellular membrane in the MSC/Alhagi group (p < 0.05). Compared with that in the normal control group, the intensity was slightly reduced, but it was still stronger than that in the model group. In conclusion, MSC/Alhagi can alleviate inflammatory reactions in mouse colonic tissue, possibly by strengthening the protective effect of the intestinal mucosal barrier.


Assuntos
Colite Ulcerativa , Fabaceae , Células-Tronco Mesenquimais , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Fator de Células-Tronco , Antígeno Nuclear de Célula em Proliferação , Fator de Necrose Tumoral alfa , Inflamação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
3.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605318

RESUMO

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Assuntos
Adipócitos , Genes Homeobox , Animais , Bovinos , Adipócitos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Fatores de Transcrição/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo , Adipogenia/genética
4.
Folia Histochem Cytobiol ; 62(1): 25-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563050

RESUMO

INTRODUCTION: Endometriosis (EMs), manifested by pain and infertility, is a chronic inflammatory disease. The precise pathophysiology of this disease remains uncertain. Insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) and polypyrimidine tract-binding protein 1 (PTBP1) have both been found to regulate proliferation, apoptosis, and invasion. This study aimed to investigate the effects of IGF2BP1/PTBP1 in treating EMs. MATERIALS AND METHODS: qRT-PCR and western blotting were employed to quantify IGF2BP1 and PTBP1 expression in six patients with EMs (mean age 33.83 years). The correlation analysis, STRING database prediction, and RNA immunoprecipitation were utilized to identify the relationship between IGF2BP1 and PTBP1. Ectopic endometrial volume, weight, HE staining, and IGF2BP1 silencing were utilized to estimate the effects of IGF2BP1 in EMs model rats. qRT-PCR, CCK-8, 5-ethynyl-2'-deoxyuridine (EDU) labeling, Transwell assay, and flow cytometry were utilized to assess the effects of IGF2BP1/PTBP1 on the proliferation, migration, invasion, and apoptosis of ectopic endometrial stromal cells (eESCs). Furthermore, western blotting was employed to evaluate expressions of PCNA, VEGF, and E-cadherin in EMs rats and eESCs. RESULTS: The mRNA and protein levels of IGF2BP1 and PTBP1 in the ectopic and eutopic endometrium of EMs patients were significantly increased. RNA immunoprecipitation revealed a close interaction of IGF2BP1 with PTBP1. Additionally, the endometrial volume, weight, and histopathologic scores in rats were significantly reduced after IGF2BP1 silencing. IGF2BP1 silencing also decreased the expression of PCNA and VEGF, and increased E-cadherin expression in endometrial tissues of EMs rats. Moreover, IGF2BP1 silencing inhibited proliferation, migration, and invasion and promoted apoptosis through PTBP1 in eESCs. CONCLUSIONS: IGF2BP1 exhibits potential beneficial properties in the management of EMs by interacting with PTBP1, thereby highlighting IGF2BP1 as a promising therapeutic target for EMs.


Assuntos
Endometriose , Adulto , Animais , Feminino , Humanos , Ratos , Caderinas/metabolismo , Proliferação de Células , Endometriose/patologia , Endométrio/patologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Sci Rep ; 14(1): 6402, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493224

RESUMO

Allopregnanolone (ALLO) is a known neurosteroid and a progesterone metabolite synthesized in the ovary, CNS, PNS, adrenals and placenta. Its role in the neuroendocrine control of ovarian physiology has been studied, but its in situ ovarian effects are still largely unknown. The aims of this work were to characterize the effects of intrabursal ALLO administration on different ovarian parameters, and the probable mechanism of action. ALLO administration increased serum progesterone concentration and ovarian 3ß-HSD2 while decreasing 20α-HSD mRNA expression. ALLO increased the number of atretic follicles and the number of positive TUNEL granulosa and theca cells, while decreasing positive PCNA immunostaining. On the other hand, there was an increase in corpora lutea diameter and PCNA immunostaining, whereas the count of TUNEL-positive luteal cells decreased. Ovarian angiogenesis and the immunohistochemical expression of GABAA receptor increased after ALLO treatment. To evaluate if the ovarian GABAA receptor was involved in these effects, we conducted a functional experiment with a specific antagonist, bicuculline. The administration of bicuculline restored the number of atretic follicles and the diameter of corpora lutea to normal values. These results show the actions of ALLO on the ovarian physiology of the female rat during the follicular phase, some of them through the GABAA receptor. Intrabursal ALLO administration alters several processes of the ovarian morpho-physiology of the female rat, related to fertility and oocyte quality.


Assuntos
Pregnanolona , Progesterona , Gravidez , Feminino , Ratos , Animais , Pregnanolona/farmacologia , Progesterona/farmacologia , Antígeno Nuclear de Célula em Proliferação , Bicuculina/farmacologia , Receptores de GABA-A , Corpo Lúteo
7.
Sci Adv ; 10(9): eadl1739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427736

RESUMO

During DNA replication, the proliferating cell nuclear antigen (PCNA) clamps are loaded onto primed sites for each Okazaki fragment synthesis by the AAA+ heteropentamer replication factor C (RFC). PCNA encircling duplex DNA is quite stable and is removed from DNA by the dedicated clamp unloader Elg1-RFC. Here, we show the cryo-EM structure of Elg1-RFC in various states with PCNA. The structures reveal essential features of Elg1-RFC that explain how it is dedicated to PCNA unloading. Specifically, Elg1 contains two external loops that block opening of the Elg1-RFC complex for DNA binding, and an "Elg1 plug" domain that fills the central DNA binding chamber, thereby reinforcing the exclusive PCNA unloading activity of Elg1-RFC. Elg1-RFC was capable of unloading PCNA using non-hydrolyzable AMP-PNP. Both RFC and Elg1-RFC could remove PCNA from covalently closed circular DNA, indicating that PCNA unloading occurs by a mechanism that is distinct from PCNA loading. Implications for the PCNA unloading mechanism are discussed.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542333

RESUMO

DNA Damage Tolerance (DDT) mechanisms allow cells to bypass lesions in the DNA during replication. This allows the cells to progress normally through the cell cycle in the face of abnormalities in their DNA. PCNA, a homotrimeric sliding clamp complex, plays a central role in the coordination of various processes during DNA replication, including the choice of mechanism used during DNA damage bypass. Mono-or poly-ubiquitination of PCNA facilitates an error-prone or an error-free bypass mechanism, respectively. In contrast, SUMOylation recruits the Srs2 helicase, which prevents local homologous recombination. The Elg1 RFC-like complex plays an important role in unloading PCNA from the chromatin. We analyze the interaction of mutations that destabilize PCNA with mutations in the Elg1 clamp unloader and the Srs2 helicase. Our results suggest that, in addition to its role as a coordinator of bypass mechanisms, the very presence of PCNA on the chromatin prevents homologous recombination, even in the absence of the Srs2 helicase. Thus, PCNA unloading seems to be a pre-requisite for recombinational repair.


Assuntos
Proteínas de Saccharomyces cerevisiae , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Recombinação Homóloga , Replicação do DNA , DNA/genética , DNA/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Transporte/metabolismo
9.
Sci Rep ; 14(1): 7066, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528023

RESUMO

Maintenance of genome integrity is instrumental in preventing cancer. In addition to DNA repair pathways that prevent damage to DNA, damage tolerance pathways allow for the survival of cells that encounter DNA damage during replication. The Rad6/18 pathway is instrumental in this process, mediating damage bypass by ubiquitination of proliferating cell nuclear antigen. Previous studies have shown different roles of Rad18 in vivo and in tumorigenesis. Here, we show that B cells induce Rad18 expression upon proliferation induction. We have therefore analysed the role of Rad18 in B cell activation as well as in B cell lymphomagenesis mediated by an Eµ-Myc transgene. We find no activation defects or survival differences between Rad18 WT mice and two different models of Rad18 deficient tumour mice. Also, tumour subtypes do not differ between the mouse models. Accordingly, functions of Rad18 in B cell activation and tumorigenesis may be compensated for by other pathways in B cells.


Assuntos
Ativação Linfocitária , Neoplasias , Ubiquitina-Proteína Ligases , Animais , Camundongos , Carcinogênese/genética , Dano ao DNA , Reparo do DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Ligação a DNA/metabolismo , Linfócitos B/metabolismo , Ativação Linfocitária/genética
10.
Reprod Toxicol ; 125: 108570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484946

RESUMO

Apilarnil, a bee-derived product originating from drone larvae, offers a range of advantageous properties for both humans and animals. It functions as an antioxidant, provides neuroprotection, boosts fertility, and has antiviral capabilities. Additionally, it is a provider of androgenic hormones. These beneficial functions are supported by its chemical composition, which comprises mineral salts, vitamins, carbs, lipids, hormones, and amino acids. The current study aimed to evaluate the ameliorative effect of apilarnil against Bisphenol A (BPA)-induced testicular toxicity in male adult rats. Forty-eight Wistar albino rats were randomly classified into six groups. The first, second, and third received olive oil, BPA at a dose of 50 mg/kg body weight (bwt), and apilarnil at a dose of 0.6 g/kg bwt, respectively. The fourth, fifth, and sixth groups received apilarnil with, before, or after BPA administration, respectively. Phytochemical analysis using included linear ion trap-ultra-performance liquid chromatography-tandem mass spectrometry (LTQ-UPLC-MS/MS) and global natural products social molecular networking (GNPS) revealed the presence of lysine, 10-hydroxy-(E)-2-dodecenoic acid, apigenin7-glucoside, testosterone, progesterone, and campesterol. BPA administration decreased serum level of follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, glutathione (GSH) concentration, total sperm count, motility, and vitality. Additionally, BPA increased sperm abnormalities, malondialdehyde concentration (MDA), and decreased proliferating cell nuclear antigen (PCNA) expression. The treatment with apilarnil ameliorated BPA reproductive toxicity in rats which was indicated by increased serum testosterone levels, normalized serum levels of FSH and LH, and concentration of MDA and GSH activity. Moreover, apilarnil improved sperm count, motility, morphology, and PCNA expression. Apilarnil was found to enhance reproductive hormones, MDA levels, antioxidant activity, and PCNA expression.


Assuntos
Antioxidantes , Compostos Benzidrílicos , Produtos Biológicos , Fenóis , Humanos , Adulto , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Cromatografia Líquida , Ratos Wistar , Contagem de Espermatozoides , Sêmen/metabolismo , Espectrometria de Massas em Tandem , Testículo , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Hormônio Foliculoestimulante , Hormônio Luteinizante , Testosterona , Glutationa/metabolismo , Estresse Oxidativo
11.
Comput Biol Med ; 173: 108259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522248

RESUMO

Despite efforts to elucidate Zika virus (ZIKV) teratogenesis, still several issues remain unresolved, particularly on the molecular mechanisms behind the pathogenesis of Congenital Zika Syndrome (CZS). To answer this question, we used bioinformatics tools, animal experiments and human gene expression analysis to investigate genes related to brain development potentially involved in CZS. Searches in databases for genes related to brain development and CZS were performed, and a protein interaction network was created. The expression of these genes was analyzed in a CZS animal model and secondary gene expression analysis (DGE) was performed in human cells exposed to ZIKV. A total of 2610 genes were identified in the databases, of which 1013 were connected. By applying centrality statistics of the global network, 36 candidate genes were identified, which, after selection resulted in nine genes. Gene expression analysis revealed distinctive expression patterns for PRKDC, PCNA, ATM, SMC3 as well as for FGF8 and SHH in the CZS model. Furthermore, DGE analysis altered expression of ATM, PRKDC, PCNA. In conclusion, systems biology are helpful tools to identify candidate genes to be validated in vitro and in vivo. PRKDC, PCNA, ATM, SMC3, FGF8 and SHH have altered expression in ZIKV-induced brain malformations.


Assuntos
Complicações Infecciosas na Gravidez , Teratogênese , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Humanos , Zika virus/genética , Infecção por Zika virus/genética , Antígeno Nuclear de Célula em Proliferação
12.
Chem Biol Interact ; 393: 110970, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513930

RESUMO

Liver regeneration after liver tumor resection or liver transplantation is crucial, the remaining liver frequently fails to regenerate in some patients. Oleanolic acid (OA), a pentacyclic triterpenoid compound which has been shown to protect against various liver diseases. However, the effect of OA on liver regeneration after partial hepatectomy (PHx) is still unclear. In this study, the results showed that OA (50 mg/kg, twice daily) treatment induced liver mass restoration and increased the liver-to-body weight ratio of mice following PHx. Meanwhile, OA promoted hepatocyte proliferation and increased the number of BrdU-, Ki67-and PCNA-positive cells. Furthermore, OA increased the nuclear accumulation of PXR and induced the expression of PXR downstream proteins such as CYP3A11, UGT1A1 and GSTM2 in mice, as well as in AML12 and HepRG cells. Luciferase reporter assay and nuclear localization of PXR further demonstrated the effect of OA on PXR activation in vitro. Molecular docking simulation showed that OA could interact with the PXR active sites. Moreover, OA inhibited the expression of FOXO1, RBL2 and CDKN1B, and increased the expression of PCNA, CCND1 and CCNE1 in vivo and in vitro. Silencing of Pxr further confirmed that OA-mediated upregulation of proliferation-related proteins depended on PXR. The current study illustrated that OA exhibited a significant promoting effect on liver regeneration following PHx, potentially through regulation of the PXR signaling pathway to accelerate liver recovery.


Assuntos
Hepatectomia , Ácido Oleanólico , Humanos , Camundongos , Animais , Regeneração Hepática , Receptor de Pregnano X/metabolismo , Ácido Oleanólico/farmacologia , Hepatócitos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Simulação de Acoplamento Molecular , Fígado , Transdução de Sinais , Camundongos Endogâmicos C57BL
13.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38483185

RESUMO

Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor ß (TRß) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRß binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.


The goose industry plays important roles in economics, cultures, and ecosystems, yet the low laying and growth rates of many indigenous breeds hinders the development of the goose farming. Betaine, an important methyl donor, is commonly used as a feed additive in livestock and poultry to enhance animal growth. Dietary supplementation of betaine in laying hens or gestational sows has been reported to promote the growth of their offspring. Here, we sought to investigate whether and how dietary betaine supplementation affects the growth and development of offspring goslings. In this study, goose breeders, both male and female, were fed a basal diet supplemented respectively with 0, 2.5, or 5 g/kg betaine for 7 wk. Goslings hatched from the breeder eggs of different groups were raised under the same standard condition for assessing the growth performance. Parental betaine increases the growth rate of offspring goslings with decreased DNA methylation on the IGF-2 gene promoter and increased expression of the IGF-2 gene in the liver. These results provide scientific evidence for the inter-generational effect of betaine on gosling growth.


Assuntos
Betaína , Fator de Crescimento Insulin-Like II , Animais , Betaína/farmacologia , Fator de Crescimento Insulin-Like II/genética , Gansos/genética , Gansos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Óvulo/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , Dieta/veterinária , Galinhas/genética , Galinhas/metabolismo , Epigênese Genética , RNA Mensageiro/metabolismo , Ração Animal/análise
14.
EMBO Rep ; 25(4): 1734-1751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480846

RESUMO

Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Humanos , Replicação do DNA/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Telomerase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 143-149, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430028

RESUMO

To explore the action and mechanism in which circular RNA (circRNA) mitofusin 2 (MFN2) repressed the malignant proliferation of Wilms tumor (WT) via modulating microRNA (miR)-372-3p/transforming growth factor-ß receptor type 2 (TGFBR2) axis. CircRNA MFN2 was distinctly elevated in the tissues and cells of WT patients, while miR-372-3p was silenced in the tissues and cells of WT. Test of TGFBR2, PCNA and Bax was implemented. Transfection with si-circRNA MFN2 or miR-372-3p-mimic restrained cancer cell advancement and the number of PCNA content was declined, while transfection with miR-372-3p-inhibitor was opposite, and PCNA content was augmented. MiR-372-3p-inhibitor turned around si-circRNA MFN2's therapeutic action after co-transfection with si-circRNA MFN2 + miR-372-3p-inhibitor. Ultimately, it was verified that circRNA MFN2 was negatively associated with miR-372-3p, which was negatively linked with TGFBR2, and circRNA MFN2 was positively associated with TGFBR2. To sum up, the results of this research illuminated circRNA MFN2 repressed WT's malignant proliferation via modulating miR-372-3p/TGFBR2 axis.


Assuntos
MicroRNAs , RNA Circular , Receptor do Fator de Crescimento Transformador beta Tipo II , Tumor de Wilms , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Antígeno Nuclear de Célula em Proliferação , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , RNA Circular/genética , Fatores de Crescimento Transformadores , Tumor de Wilms/genética
16.
EMBO J ; 43(7): 1273-1300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448672

RESUMO

MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Antígeno Nuclear de Célula em Proliferação/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Peptídeos/metabolismo , Dano ao DNA
17.
EMBO J ; 43(7): 1301-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467834

RESUMO

Upon replication fork stalling, the RPA-coated single-stranded DNA (ssDNA) formed behind the fork activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase, concomitantly initiating Rad18-dependent monoubiquitination of PCNA. However, whether crosstalk exists between these two events and the underlying physiological implications of this interplay remain elusive. In this study, we demonstrate that during replication stress, ATR phosphorylates human Rad18 at Ser403, an adjacent residue to a previously unidentified PIP motif (PCNA-interacting peptide) within Rad18. This phosphorylation event disrupts the interaction between Rad18 and PCNA, thereby restricting the extent of Rad18-mediated PCNA monoubiquitination. Consequently, excessive accumulation of the tumor suppressor protein SLX4, now characterized as a novel reader of ubiquitinated PCNA, at stalled forks is prevented, contributing to the prevention of stalled fork collapse. We further establish that ATR preserves telomere stability in alternative lengthening of telomere (ALT) cells by restricting Rad18-mediated PCNA monoubiquitination and excessive SLX4 accumulation at telomeres. These findings shed light on the complex interplay between ATR activation, Rad18-dependent PCNA monoubiquitination, and SLX4-associated stalled fork processing, emphasizing the critical role of ATR in preserving replication fork stability and facilitating telomerase-independent telomere maintenance.


Assuntos
Telomerase , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Telomerase/genética , Ubiquitinação , Replicação do DNA , Telômero/genética , Telômero/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA
18.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458201

RESUMO

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Assuntos
Ciclinas , Reparo de Erro de Pareamento de DNA , Animais , Ciclinas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interfase , Mamíferos/metabolismo
19.
Acta Cir Bras ; 39: e391124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477785

RESUMO

PURPOSE: This study evaluated the protective effect of hesperidin on injury induced by gastric ischemia-reperfusion. METHODS: Fifty male Sprague Dawley rats (250-300 g) were divided into five groups: control (C), sham (S), ischemia (I), ischemia-reperfusion (I/R) and hesperidin + ischemia-reperfusion (Hes + I/R). Hesperidin was injected intraperitoneally at the dose of 100 mg/kg one hour before the experimental stomach ischemia-reperfusion. Celiac artery was ligated. After 45 minutes ischemia and 60 minutes reperfusion period, blood samples were obtained under anesthesia. Then, animals were sacrificed, stomach tissues were excised for biochemical, and histopathological analyses were performed. Malondialdehyde levels and superoxide dismutase, glutathione peroxidase activities and total antioxidant status (TAS), total oxidant status (TOS), protein, total thiol parameters were measured in plasma, and tissue homogenate samples. H + E, periodic acid-Schiff, hypoxia inducible factor, terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and proliferating cell nuclear antigen (PCNA) for cell proliferation as immunohistochemical parameters were determined. RESULTS: Upon biochemical and histopathological assessment, hesperidin decreased stomach tissue changes in comparison with IR group. Ischemia-reperfusion injury led to a considerably increase in malondialdehyde, protein, and TOS levels (p < 0.001) in stomach tissue. Hesperidin treatment significantly decreased malondialdehyde, protein, and TOS levels (p < 0.001). Hesperidin increased superoxide dismutase, TAS, total thiol and glutathione peroxidase activities in comparison with IR group. Hesperidin reduced damage and also increased TUNEL and PCNA immunoreactivity in stomach tissue. CONCLUSIONS: Hesperidin was able to decrease I/R injury of the stomach tissue due to inhibition of lipid peroxidation and protein oxidation, duration of antioxidant, and free radical scavenger properties. Consequently, hesperidin can provide a beneficial therapeutic choice for preventing stomach tissue ischemia-reperfusion injury in clinical application.


Assuntos
Hesperidina , Traumatismo por Reperfusão , Masculino , Ratos , Animais , Antígeno Nuclear de Célula em Proliferação , Antioxidantes , Ratos Sprague-Dawley , Estômago , Superóxido Dismutase , Isquemia , Malondialdeído , Compostos de Sulfidrila , Glutationa Peroxidase
20.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473968

RESUMO

The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.


Assuntos
MicroRNAs , Receptores de Grelina , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação , MicroRNAs/genética , Apoptose/genética , Proliferação de Células/genética , Luciferases , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...